Irreversibility of infinite range spin glasses
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By employing the “slow-cooling” iterative solution of the mean field equations, we study the free
energy surface of the isotropic, infinite range Ising and Heisenberg spin glasses with up to 800
spins. Ising model results for the field cooled and zero field cooled magnetizations as well as the
magnetic hysteresis loops are similar to those found for the short ranged model. However, the
results for the Heisenberg model depend strongly on the range of the interaction. The infinite
range model shows macroscopic irreversiblity, in contrast to the short range isotropic Heisenberg

case which has no irreversibility.

PACS numbers: 75.10.Hk, 75.10.Jm

The infinite range spin-glass model described by Sher-
rington and Kirkpatrick' (SK) provides a useful starting
point for a theory of spin glasses. Despite considerable effort,
little progress has been made in developing a satisfactory
microscopic theory of spin glasses.” Much of our present
understanding comes from numerical analysis of simplified
models.? While some progress has recently been made in
understanding the nonergodic®* behavior of the infinite-
range Ising spin glass, there has been little work on the irre-
versible and time dependent properties of this model. Theo-
retical studies”® of the infinite range isotropic Heisenberg
model using replica techniques find a spin glass phase at a
well-defined transition temperature 7,.. Below T, it has
been shown that this replica symmetry is broken. Though
the breaking of replica symmetry is often presumed to be
related to irreversibility and the onset of history dependent
effects, there is presently no proof that these phenomena are
connected. In this paper, we explore the irreversible and me-
tastable properties of both the Ising and Heisenberg infinite
range spin glasses.

Recently, it was demonstrated®!! that the minima of
the free energy surface as functions of temperature 7" and
external field H could explain the nature of reversibility and
irreversibility in short-range Ising and Heisenberg spin
glasses. One very striking result'® is that in an isotropic Hei-
senberg spin glass, there is no irreversibility. The field-
cooled (FC) and zero-field-cooled {ZFC) states are the same
and magnetic hysteresis is absent. These results at first sight
seem to be in conflict with those of Refs. 7 and 8, if we make
the (as yet unproved) connection between replica symmetry
breaking and the onset of irreversibility. However, since the
calculations of Refs. 7 and 8 are for an infinite-range model,
it is important to study within the free energy formalism the
reversibility or irreversibility of the long-range models.

In the present paper we report results for the FC and
ZFC magnetizations and magnetic hysteresis for both the
Ising and Heisenberg infinite range spin glasses. We employ
the iterative mean field theory for our calculation which at
T == O is equivalent to that used in Monte Carlo calculations
for obtaining ground states. However, our iterative mean
field approach is a factor of 10-~100 times faster which ena-
bled us to determine for the first time the ground state energy
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and the internal field distribution for the infinite range Hei-
senberg spin glass.""

The SK model generalized to vector spins is described
by the Hamiltonian

H=-3JS-8~-FH-S (1)
i i

for N classical spins S; where H is the external magnetic
field. The summation is over all pairs {i,j). The exchange in-
teractions J;; are given by a Gaussian distribution of mean
Jo/(N — 1) and variance J?/(N — 1). We take J = 1. The N
dependence of the interactions ensures a correct thermody-
namic limit. The spins are an m-component vector, except
for m = 1 which is Ising-like.

In these calculations, we look at the simplest mean field
model for the free energy functional F [ m, ], where m, is the
thermal average of the spin at the ith site. The corrections to
mean field theory, deriving from the “reaction term” lead to
unphysical results. Since, in the short-ranged models, the
simple mean field theory has led to useful insights, we shall
adopt that method here. It is important to note that the
ground states (7 = 0) derived in mean-field theory satisfy the
condition for metastability used in Monte Carlo simulations.

For the vector spin glasses, we solve iteratively the self-
consistent equations deriving from dF /dm, = Q,

m; = h,SBs(|4;|)/ |k, |, (2a)
whereh, = S H + B 3;J;m; and By is the Brillouin function
for general spin .S and B = 1/kT. We choose S = 1 for the

Heisenberg model. To be consistent with previous calcula-
tions for the Ising model,’ we consider S = + 1,

m; = tanhB(; Jm, +H) . {2b)

Convergence is assumed when

> [m), —(m),_1*/ 3 (m); <1072, (3)

where the subscript 7 denotes the nth iteraction. Our results
are essentially unchanged if we choose a less stringent error
criterion, say 10~°. However, for any weaker convergence
criterion, we observe significant differences in the final re-
sults for the energy, free energy, and magnetization. In most

®© 1984 American Institute of Physics 1661

Downloaded 14 Oct 2005 to 147.155.4.175. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



cases we begin our numerical calculations at 7> 7, where
T, is the mean field spin glass transition temperature and
cool in zero or finite field. We put m; in a randomly chosen
direction at high T and decrease 7 in small steps, typically
0.1 or 0.2 J. At each T we can follow the solution with de-
creasing T without difficulty. At each subsequent 7, the con-
verged values of the previous temperature is used to start the
next interaction. In this way it is assumed that the system
“follows” a given minimum of the energy surface as it
evolves with H and 7. As in most numerical approaches, we
take advantage of the fact that updating the m, as we iterate
leads to much more rapid convergence.

ISING MODEL RESULTS

The Edwards-Anderson order parameter Q = £,m?/
N as a function of T for three different system sizes NV is
qualitatively similar to the short range results.”'° T, is de-
fined as the lowest 7"at which Q = 0, obtained by extrapolat-
ing to N— oo. From our numerical results we get 7. =2 J,
consistent with the exact result for the mean field equations,
Eq. (2b). Note this value for T, is twice the exact value for the
infinite range Ising model. It is interesting to note that if we
plot Q as a function of 7/T, where T, =2 J, the results
agree well with the Q obtained from Monte Carlo studies.'
27 is also the value at which the ZFC magnetization M 7¢
has a maximum for small H. In Fig. 1 we plot the tempera-
ture dependence of M ZF< and M " (corresponding to the
lower and upper curves respectively, for each pair of curves).
The values of the magnetic field {in units of J) are indicated.
These results are an average over 50 bond configurations for
N =200 spins. An average of 100 configurations for 100
spins gives qualitatively the same result. From Fig. 1 it is
evident that the results for FC and ZFC magnetization for
the infinite range Ising spin glasses are similar with those of
the Ising short range model.® The arrows in the bottom sets
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FIG. 1. Temperature dependence of field-cooled (FC) and zero-field-cooled
(ZFC) magnetization for N = 200 averaged over 50 samples for various
magnetic fields & {in unitsof J}. 7, =2 J.

1662 J. Appl. Phys., Vol. 55, No. 6, 15 March 1984

03} ‘e -

NI

0.1+ \.
Irreversible \

0.0 Ly 1 1 ] !
" 08 0.7 0.8 0.9 1.0

T(HIT,

Slx
.

F1G. 2. Dependence of the reduced field H /T on the reduced temperature
T{H)/T,.. T.(H)is the T at which M ™ = M%7 and T,=T.(0).

of curves of Fig. 1 indicate that the ZFC curve is obtained
upon warming only. The FC curve, by contrast, is complete-
ly reversible with respect to temperature variations. As the
field increases, the splitting of the FC and ZFC curves de-
crease. This is a direct reflection of the fact that the number
of minima on the free-energy surface decreases as H in-
creases. In Fig. 2 we plot for different # the temperature at
which the M F€ = M *F<| i.e., the T below which irreversibi-
lity sets in.

We also studied the magnetic hysteresis for very low T,
shown in Fig. 3 for J, = 0.0 and 0.50. The results are aver-
aged over 50 configurations for N = 200. As expected as J,
increases the magnetic hysteresis loops become sharper.

All of our results for the infinite range Ising model agree
with our previous results for the short range model.® How-
ever, it is interesting that for the infinite range model, it is
possible to construct a Hamiltonian'? for which the mean
field equations, Eq. (3), are exact. This new Hamiltonian can
be solved exactly using replica techniques and the results
compared with our numerical results. This should be an in-
teresting test of the replica symmetry breaking methods.
This work is in progress and will be reported separately.

HEISENBERG MODEL RESULTS

Our previous results for the infinite range Heisenberg
spin glass indicated that unlike the short ranged models the
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FIG. 3. Magnetic hysteresis curves M vs H, for symmetric field sweeps from
high field for N = 200 averaged over 50 samples at T = 0.05 for two values
of J,. All energies are measured in units of J.
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FIG. 4. Temperature dependence of field-cooled (FC) and zero-field-cooled
{(ZFC) magnetizations for the isotropic, Heisenberg infinite range spin giass
system for different ¥ and H, = 0.1.

system showed signs of macroscopically irreversible for
N 2 400 spins. We have systematically studied this irreversi-
bility in the infinite range model. By cooling in the presence
of a small magnetic field (H = 0.1), we can calculate M F€.
However, by slowly cooling from high T to very low T'in the
presence of zero external field and then applying the field, we
calculate M ZF€, For N<200 spins there is no irreversibility
(M TC = M %FC) but for N2 400, the system is irreversible
(M FC€ s M ZFC), This is clearly shown in Fig. 4 where we plot
the FC and ZFC magnetizations for H = 0.1 for three values
of N. We averaged over 15, 7, and 4 configurations for
N = 200, 400, and 800, respectively. Note that as N increases
the splitting of the FC and ZFC curves increases. We also
examine FC and ZFC magnetizations for 800 spins for dif-
ferent magnetic fields. For a small external magnetic field
M “FC js qualitatively different than we found the Ising mod-
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el. Here M ZFC remains flat as a function of 7, always smaller
than MFC. Only at higher 7 does M % meet M*. As H
increases, the splitting decreases. At H, =04, M FC
— MZFC.

In conclusion, we note that the most important aspect
of the present work is that irreversibility exists for the infi-
nite range Heisenberg spin glass. We find that the range of
interaction plays an important role in determining the irre-
versible behavior of the Heisenberg spin glasses. It seems
that the barriers between minima become larger as the range
of interaction increases and the lowest energy state is not as
accessible as in the finite range case.
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